metabelian, soluble, monomial, A-group
Aliases: C32⋊2C8, (C3×C6).C4, C2.(C32⋊C4), C3⋊Dic3.1C2, SmallGroup(72,19)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 |
C32 — C32⋊2C8 |
Generators and relations for C32⋊2C8
G = < a,b,c | a3=b3=c8=1, cbc-1=ab=ba, cac-1=a-1b >
Character table of C32⋊2C8
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 4 | 4 | 9 | 9 | 4 | 4 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | linear of order 4 |
ρ5 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ87 | ζ85 | ζ83 | ζ8 | linear of order 8 |
ρ6 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ8 | ζ83 | ζ85 | ζ87 | linear of order 8 |
ρ7 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ83 | ζ8 | ζ87 | ζ85 | linear of order 8 |
ρ8 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ85 | ζ87 | ζ8 | ζ83 | linear of order 8 |
ρ9 | 4 | 4 | 1 | -2 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ10 | 4 | 4 | -2 | 1 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ11 | 4 | -4 | -2 | 1 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ12 | 4 | -4 | 1 | -2 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 21 9)(2 10 22)(3 11 23)(4 24 12)(5 17 13)(6 14 18)(7 15 19)(8 20 16)
(2 22 10)(4 12 24)(6 18 14)(8 16 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,21,9)(2,10,22)(3,11,23)(4,24,12)(5,17,13)(6,14,18)(7,15,19)(8,20,16), (2,22,10)(4,12,24)(6,18,14)(8,16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (1,21,9)(2,10,22)(3,11,23)(4,24,12)(5,17,13)(6,14,18)(7,15,19)(8,20,16), (2,22,10)(4,12,24)(6,18,14)(8,16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,21,9),(2,10,22),(3,11,23),(4,24,12),(5,17,13),(6,14,18),(7,15,19),(8,20,16)], [(2,22,10),(4,12,24),(6,18,14),(8,16,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,63);
C32⋊2C8 is a maximal subgroup of
C2.F9 C32⋊D8 C32⋊2SD16 C32⋊Q16 C3⋊S3⋊3C8 C32⋊M4(2) C62.C4 C33⋊4C8 (C3×C15)⋊9C8 (C3×C6).F5
C32⋊2C8 is a maximal quotient of
C32⋊2C16 He3⋊2C8 C33⋊4C8 (C3×C15)⋊9C8 (C3×C6).F5
Matrix representation of C32⋊2C8 ►in GL4(𝔽5) generated by
4 | 0 | 2 | 0 |
0 | 0 | 0 | 3 |
2 | 0 | 0 | 0 |
0 | 3 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 2 |
0 | 0 | 1 | 0 |
0 | 2 | 0 | 0 |
0 | 2 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(5))| [4,0,2,0,0,0,0,3,2,0,0,0,0,3,0,4],[1,0,0,0,0,4,0,2,0,0,1,0,0,2,0,0],[0,1,0,0,2,0,0,0,0,0,0,1,1,0,3,0] >;
C32⋊2C8 in GAP, Magma, Sage, TeX
C_3^2\rtimes_2C_8
% in TeX
G:=Group("C3^2:2C8");
// GroupNames label
G:=SmallGroup(72,19);
// by ID
G=gap.SmallGroup(72,19);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,3,10,26,1123,168,1604,609]);
// Polycyclic
G:=Group<a,b,c|a^3=b^3=c^8=1,c*b*c^-1=a*b=b*a,c*a*c^-1=a^-1*b>;
// generators/relations
Export
Subgroup lattice of C32⋊2C8 in TeX
Character table of C32⋊2C8 in TeX